

Formal Specification of Aptitude Architecture for Recommendation and Adaptation of Learning Contents and Activities Based on Learning Analytics

Adelina Aleksieva-Petrova and Milen Petrov

Congress Computer Science, Computer Engineering, & Applied Computing (CSCE'21: July 26-29, 2021)

Introduction

- Methodology definition
- Semantic modelling
- Data analysis
- Learning courseware enhancement and platform development
- Validation

Aptitude project

Designs the platform for adaptation and recommendation of learning contents and activities based on learning and gaming analytics.

http://aptitude.w3c.fmi.uni-sofia.bg/

Introduction

http://aptitude.w3c.fmi.uni-sofia.bg/

- standardized system
- data exchange
- human-readable and machine-readable data
- communication protocol

Aptitude project

Designs the platform for adaptation and recommendation of learning contents and activities based on learning and gaming analytics.

Paper goals

- a meta-model and a formal model of software architecture for the recommendation and adaptation of learning content and activities based on learning analytics.
- a proof-of-concept implementation of the model which allows validation of the system architecture.

Methodology

http://aptitude.w3c.fmi.uni-sofia	a.
-----------------------------------	----

	Meta-model	\mathbb{N}	Detail Architecture	\mathbb{N}	Case Study	
\square	Definition		Constructs		Prototypes	

Meta-model of Aptitude System Architecture

Detailed Architecture Constructs

Case Study

- Learning Record Store the reference implementation of ADL LRS has been chosen for the purpose of building this infrastructure, as it has a demonstration purpose.
- Source(s) of training data the Moodle training platform has been selected. It is widely used, has many plugins, including LogStore xAPI, which helps Moodle become a Data Source for LRS.
- Data visualization software stored in LRS Software called LRS Viewer must be implemented to extract xAPI "expressions" from ADL LRS.

http://aptitude.w3c.fmi.uni-sofia.bg/

Module organization

LRS Viewer

- Visualization of xAPI "expressions" in an easy-to-read format.
- Table paging to increase the usability of the resulting table.
- Data filtering to facilitate search.
- Exporting data contained in the ADL LRS in order to be able to create archives.
- Importing a file with xAPI "expressions" from LRS Viewer to ADL LRS. This will allow for a possible backup recovery in the event of a failure in the ADL LRS.
- Caching of LRS data.

http://aptitude.w3c.fmi.uni-sofia.bg/

Э

Workflow of xAPI "expressions"

Conclusion

The main objective of the proposed architecture is to build a flexible infrastructure for the adaptation and recommendation of learning content and activities based on data analysis for learners:

- to allow the integration of different types of educational systems, tools, services, and games, which can be both data sources and consumers of services.
- To allow the analysed data related to training to be extended through ontologies and defined rules.
- To ensure an independent form of recommendation and adaptation by predicting both the learning content and the sequence of learning activities.

Acknowledgment

The research reported here was funded by the project "An innovative software platform for big data learning and gaming analytics for a user-centric adaptation of technology enhanced learning (APTITUDE)" - research projects on the societal challenges – 2018 by Bulgarian National Science Fund with contract №: KP-06OPR03/1 from 13.12.2018.

Thank you!

Adelina Aleksieva-Petrova

- Faculty of Computer System and Technologies, Technical University of Sofia, Bulgaria
- E-mail: aaleksieva@tu-sofia.bg

Milen Petrov

- Faculty of Mathematics and Informatics, Sofia University "St. Kl.Ohridski", Bulgaria
- E-mail: milenp@fmi.uni-sofia.bg

